Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  64
 Total visitors :  7659740

Natural Genotypic Variation Underpins Root System Response to Drought Stress in Bambara Groundnut [ Vigna subterranea (L.) Verdc.]
Wednesday, 2022/05/04 | 08:09:04

Kumbirai Ivyne MatevaHui Hui ChaiSean MayesFesto Massawe

Front Plant Sci.; 2022 Mar 28;13:760879.  doi: 10.3389/fpls.2022.760879. eCollection 2022.

Abstract

Bambara groundnut [Vigna subterranea (L.) Verdc.] is grown in rainfed production systems and suffers from periodic drought stress (DS), leading to yield reductions. Natural genotypic variation for root traits is essential for adaptation to water deficit conditions. However, root traits have not been fully utilised as selection criteria to improve DS in bambara groundnut. The present study explored the natural genotypic variation found in single genotypes of bambara groundnut derived from landraces to identify adaptive differences in tap root length (TRL) and root length density (RLD) in response to DS. A diverse core collection of eight bambara groundnut genotypes from various locations (namely, Gresik, LunT, IITA-686, DodR, S19-3, Tiga nicuru, and Ankpa-4, DipC1), were grown for two seasons (2018 and 2019) in polyvinyl chloride (PVC) columns with well-watered (WW) and 30-day DS treatments. Plant samples were collected at 55 days after emergence (DAE) (30 days of DS) and at 105 DAE (30 days of DS plus 50 days of recovery). Under DS, differential TRL among genotypes at 55 DAE was observed, with DodR recording the longest among genotypes with an increase (1% in 2018) in TRL under DS compared to WW, whereas LunT and IITA-686 showed significant (p < 0.001) decrease in TRL (27 and 25%, respectively, in 2018). Average RLD was observed to have the highest reduction under DS in the 90-110 cm layer (42 and 58%, respectively, in 2018 and 2019). Rainy habitat LunT had limited roots in 2018 and recorded the least (0.06 ± 0.013 cm-3) RLD in 2019. However, dry-habitat DodR showed an increase in the RLD (60-90 cm) under DS compared to WW, while dry-habitat S19-3 densely occupied all depths with RLD of 0.16 ± 0.05 and 0.18 ± 0.01 cm cm-3 in the deepest layer in both seasons, respectively. Reduced RLD under DS showed recovery when the plants were re-watered. These plants were additionally observed to have RLD that surpasses the density in WW at all soil depths at 105 DAE. Also, recovery was shown in Tiga nicuru and DodR (0-30 cm) and IITA-686 (90-110 cm) in 2019. Average RLD under DS treatment was associated with substantial grain yield advantage (R 2 = 0.27 and R 2 = 0.49, respectively) in 2018 and 2019. An increase in TRL allowed DodR to quickly explore water at a deeper soil depth in response to gradually declining soil water availability. High RLD in genotypes such as DodR, DipC1 and S19-3 also offered adaptive advantage over other genotypes under DS. Variation in intrinsic RLD in deeper soil depths in the studied genotypes determines root foraging capacity when facing DS. This suggests that different agroecological environments to which bambara groundnut is subjected in its natural habitat have promoted a phenotypic differentiation in root systems to adapt to ecotypic conditions, which may help offset the impact of DS. The natural genotypic variation exhibited, especially by DodR, could be exploited to identify potential quantitative trait loci (QTLs) that control deep rooting and root length density.

 

See: https://pubmed.ncbi.nlm.nih.gov/35419010/

Figure 1. Interaction effect Genotype (G) × Water management (WM) on days to 50% flowering of eight bambara groundnut genotypes grown in a soil-filled polyvinyl chloride (PVC) columns in a rainout shelter (A) well-watered (WW) and drought stress (DS) during 2018, (B) WW and DS during 2019. The data is mean ± SE values (n = 3), with different letters showing significant differences by Tukey’s honest significant difference post hoc test for treatments.

 

Back      Print      View: 152

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD